Boswell-Bèta

James Boswell Exam VWO Mathematics B - Practice exam 1

Date:
Time: 3 hours
Number of questions: 6
Number of subquestions: 16
Number of supplements: 0
Total score: 81

- Write your name on every sheet of paper you hand in.
- Use a separate sheet of paper for each question.
- For each question, show how you obtained your answer either by means of a calculation or, if you used a graphing calculator, an explanation. Otherwise, no points will be awarded to your answer.
- Make sure that your handwriting is legible and write in ink. No correction fluid of any kind is permitted. Use a pencil only to draw graphs and geometric figures.
- You may use the following:
- Graphing calculator (without CAS);
- Protractor and compass;
- Dictionary, subject to the approval of the invigilator.

Question 1. Given is the function $f(x)=x^{2} \cdot \sqrt{x+1}$. In figure 1.1 the graph of f has been drawn.

Figure 1.1

Point $A\left(-\frac{3}{4}, \frac{9}{32}\right)$ is a point on the graph of f. Line ℓ is tangent to the graph of f at point A.
a. Show analytically that line ℓ is given by: $\ell: y=-\frac{3}{16} x+\frac{9}{64}$.
V is the area of the plane enclosed by the graph of f and the x-axis. In figure 1.1 area V has been shaded grey.
V is revolved around the x-axis.
$6 p$
b. Calculate analytically the volume of the corresponding solid of revolution.

Question 2. Given is the function $f(x)=\frac{x^{2}-2 x+2}{x-1}$.
In figure 2.1 the graph of f has been drawn, together with its vertical and slant asymptote.
Figure 2.1

Point P has coordinates $(1,0)$.
5p a. Prove that the asymptotes of the graph of f intersect each other at point $P(1,0)$. The graph of f is symmetric in point $P(1,0)$ if for every value of a we have that:

$$
f(1+a)=-f(1-a)
$$

b. Prove that the graph of f is symmetric in point $P(1,0)$.

Question 3. Given are the functions:

$$
f(x)=\frac{e^{2 x}}{e^{x}+1} \quad \text { and } \quad g(x)=\frac{2}{3}-e^{x}
$$

Figure 3.1

The graphs of f and g intersect each other at only one point. We call this point A.
a. Show analytically that the x-coordinate x_{A} of point A is equal to $x_{A}=-\ln (2)$.
b. Prove that the function $F(x)=e^{x}-\ln \left(e^{x}+1\right)$ is an antiderivative of $f(x)$.
V is the part of the plane enclosed by the graph of f, the graph of g, the x-axis and the y-axis.

In figure 3.1 part V has been shaded grey.
$6 p \quad$ c. Calculate algebraically the surface area of V. Give the analytical answer or round your answer to the third decimal.

Question 4. Given are line $\ell: 7 y-x=20$ and triangle $\triangle A B C$ with $A(0,0), B(10,0)$ and $C(4,12)$.

In figure 4.1 line ℓ and triangle $\triangle A B C$ have been drawn.
Figure 4.1

Line segment $A C$ intersects line ℓ at point P. Point P has coordinates (1,3).
a. Prove that $A P$ is perpendicular to $B P$.

Line segment $B C$ intersects line ℓ at point Q.
b. Deduce that the coordinates of point Q are equal to $(8,4)$.

Line segments $A Q$ and $B P$ intersect each other at point H. See figure 4.1.
The line through points C and H intersects line segment $A B$ at point R.
It turns out that:

- line segment $C R$ is perpendicular to $A B$.
- point H is the centre of the inscribed circle of triangle $\triangle P Q R$.
(You do not have to prove this.)
c. Prove that the inscribed circle of triangle $\triangle P Q R$ is given by:

$$
x^{2}-8 x+y^{2}-4 y+18=0
$$

Question 5. On the interval $[0,2 \pi]$ the function f is given by:

$$
f(x)=\frac{\cos (x)}{\sin (x)+1} \quad\left(x \neq \frac{3}{2} \pi\right)
$$

The function g is given by: $g(x)=2 \cos (x)$.
In figure 5.1 the graphs of f and g have been drawn.
Figure 5.1

The graphs of the functions f and g intersect each other at points $A\left(\frac{1}{2} \pi, 0\right), B$ and C.
6 p a. Calculate analytically the x-coordinates of points B and C.
b. Prove that:

$$
f^{\prime}(x)=\frac{-1}{\sin (x)+1}
$$

The line tangent to the graph of f at point $A\left(\frac{1}{2} \pi, 0\right)$ intersects the y-axis at point P.
c. Show analytically that the distance between point A and point P is equal to $\frac{\pi}{4} \sqrt{5}$.

Question 6. The motion of point P through the plane is given by:

$$
P:\left\{\begin{array}{l}
x(t)=t^{3}-3 t \\
y(t)=2 t^{2}
\end{array}\right.
$$

The path of P is called curve K. In figure 6.1 curve K has been drawn.
Figure 6.1

Point P passes point $S(0,6)$ twice. The first time with velocity vector \vec{v}_{1}, the second time with velocity vector \vec{v}_{2}.
a. Calculate algebraically the angle in degrees between \vec{v}_{1} and \vec{v}_{2}. Round your answer to the second decimal.

For three values of t the velocity vector $\vec{v}(t)$ of point P is perpendicular to the acceleration vector $\vec{a}(t)$ of point P.
b. Calculate analytically the coordinates of point P at these three values of t.

Curve K has two vertical tangent lines.
c. Calculate analytically the distance between these two tangent lines.

END OF EXAM

